An uncertainty inequality for finite abelian groups
نویسنده
چکیده
Let G be a finite abelian group of order n. For a complex valued function f on G let f̂ denote the Fourier transform of f . The classical uncertainty inequality asserts that if f 6= 0 then |supp(f)| · |supp(f̂)| ≥ |G| . (1) Answering a question of Terence Tao, the following improvement of (1) is shown: Theorem: Let d1 < d2 be two consecutive divisors of n. If d1 ≤ k = |supp(f)| ≤ d2 then |supp(f̂)| ≥ n d1d2 (d1 + d2 − k) .
منابع مشابه
THE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS
A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem. In this paper we classify all finite abelian p-groups by their coranks.
متن کاملNoncommutative Uncertainty Principles
Abstract The classical uncertainty principles deal with functions on abelian groups. In this paper, we discuss the uncertainty principles for finite index subfactors which include the cases for finite groups and finite dimensional Kac algebras. We prove the Hausdorff-Young inequality, Young’s inequality, the Hirschman-Beckner uncertainty principle, the Donoho-Stark uncertainty principle. We cha...
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملThe Khinchin–kahane Inequality and Banach Space Embeddings for Metric Groups
We extend the Khinchin–Kahane inequality to an arbitrary abelian metric group G . In the special case where G is normed, we prove a refinement which is sharp and which extends the sharp version for Banach spaces. We also provide an alternate proof for normed metric groups as a consequence of a general “transfer principle”. This transfer principle has immediate applications to stochastic inequal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 27 شماره
صفحات -
تاریخ انتشار 2006